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ABSTRACT

A molecular orbital method is described which can be applied
to molecules where the resﬁrictions of mw-electron theory are not
fulfilled, It has tﬂe following main characteristics: 1) Atomic
SCF fungcions are used as a basis, 2) Core~valence interactions are
treated by means of perturbation theory, 3) Mulliken type approxi-

mations are used for many~center integrals.



1. Introduction

Molecular guantum mechanics has made great advances in recent
years with the help of electronic computers. Ab initio calculations
of the electronic structure of hany diatomic and some simple poly~-
atomic molecules .are now available and will be of increasing impor-
tanée in the future. . However, the amount of labor inﬁolved for such a
vtreatment of many chemically interesting molecules is forbidding and
makes simplifications necessary. In many cases even very crude approxi-
mations ;an give satisfactory answers to the chemist., For x-electron
systems the semiempirical molecular orbital methods named after Hiickel1
and Pariser, Parr, and Popleg have been especialiy fruitful, and several
attempts have been made to deveiop similar schemes for molecules of a
more general type.

The extended Hickel or Wolfsberg-Helmholz approach3 is particularly
simple and has given important contributions to the theory of transition
metal complexes., However, its theoretical foundation is rather weak and: .
when a more accurate method is needed it seems desirable to base it on
the self-consistent field method. Even this method in its non-empirical
form has severe limitations, i.e. the neglect of electron correlafion
and -the often very restricted set of basis orbitals employed. 1In spite
of this we will make the MO~LCAO-SCF approximatioﬁ our starting pﬁint
‘and make further approximations and simplifications from there on
leading to a scheme analogous to the Pgriser—Parr-Pople method for m-
electron s&stems. Since we want to be able to treat all kinds of mole-
cules we cannot however make dse_gf'all simplifying assumptions in x~-

electron theory. Therefore our method is slightly more complex than



the Pariser-Parr-Poéle method. Several other authors have followed
similar lines of thought, Two electron systems have been recently
considered by Pohl and cot-:oz:?;cers,l'r Klopman,5 and Jenkins and Pedley.6
Hart, Robin, and Kueblet7 have used an approximate MO-LCAO~SCF method
including overlap on the Ph molecule, but with some apéroximations
which are difficult to carry over to more general systems, Finally
Pople and coworker38 and Kaufman9 have developed methods making use of
the zerd-differential—overlap approximation.

- The method presented here differs frow previous work in several
ways. The general principle has been to avoid adjustable parameters
as fayr as possible., Atomic SCF-orbitals are used as basis functions
and the eigenvalue relations fulfilled.by thesg are used to simplify
matrix elements of the Fock operators. This is an approach similar to
the Goeppert-Mayer~-Sklar apprbximation,?o which is obtained if empirical
ionization poteatials are introduced for atomic orbital energies. The
distinction between core and valence orbitals is explicitly made and
core~valence interactions are discussed in terms of LYwdin's partitioning
approach to perturbation theory. Since we keep track of the inmner
shells, we are able to deal wi;h elementé belonging to the same group
of the periodic table on an equivalent basis, and thereby retgin'more
of classical chemical concepts. For the application of the‘mgphgé to
large molecules, integral approximaﬁions of the Mulliken type are

introduced and their invariance properties discussed.



2. Basis orbitals

We choose as our atomic orbital basis amalytical Hartree-Fock
orbitals which, thanks to Clementi's calculations,ll are now available
for all atoms and positive ions with Z =<36. In this way we have
restricted our £asis to only those orbitals which are occupied in the
atomic ground states.. Compared to a minimal basis of Slater orbitals,
analytical atomic Hartree~Fock orbitals are more diffuse and give a
better energy in ab irnitio calculations.12 The optimuﬁ orbitals
obtained from molecular Hartree-Fock calculations seem to lie in
between these two choices. Another advantage of Hartree-Fock orbitals
over simple exponentials is that orbitals on one centexr are orthogonal
to each other and are eigenfunctions to an ef?ective Hamiltonian.
Molecular integrals are however more difficult to calculate, a disad-

vantage which can partly be balanced by means of integral approximations.

3. Formal development of theory.

For a single determinant wavefunction all physical properties can
be derived from the first-order or Fock-Dirac density matrix
g(?‘ﬂ) = ZL__ 75?‘(/') <]SL (r) where the summation extends over all
occupied spinorbitals in the determinant. The total energy is given by
E— = Z- Zﬁ Zh,/th i f/?.1 QM (7‘,7)0(.)(1
g<h .
+3 [+ (2,1) L otx, e (t)
2 nz{g)\a(1:1)?m(242) —?M(T.Z)em 217 } t 2.

and the effective Hamiltonian or Fock operator by

FM= /’L7 +* foé"z —)%_LCYTEJ' )g"‘ (252).
(2)



Here h, =T, - X Z./r is the sum of the'one-particle kinetic energy
1 1 g 8 gl .
operator Tl and nuclear attractions Zg/rgl. We write the molecular

Fock-Dirac density matrix ?M formally as
S?A4 «-4?0 + g = ;%; g;? *vgi’) (3)

where Qg is a density function associated with the isolated atom g
and g' a_correction term. For closed shell atoms, @g will be the
atomic Fock-Dirac density matrix, and for open shell atoms, a suitable
average which will be discussed further in Sec. 5. It is further

convenient to introduce the total atomic effective potentials
= - L
uj L9 [ry, + ff’(xz\f,z_“”%)gﬁ(z',z) (&)

which permits us to write the Fock operator

Fin = T Z U+ oo, %, (1-P) ¢ a2

(5)
—— i— T
= h,, + fo&z nz({—P,z)gl(zjz)_
For the total energy we first split S inte go and g' and write:
!
E-E+E :
© (6)

where EO contains all terms independent of g', thus

E,= 2 ZgZu/Ran + [hy (1) o,
3<h S

/ : )
—(—i J?:—z. {?o( 1,7) go(_z,z) “§°(1"2)€o(2,7)}dx, obzz (N



and

~ 1 1
E'= [hoti1)d, + f‘éz{g‘,ﬁn)g’(z,z)—goa,z)g’(z.Jgd.\/,o(xz

L ! !
-+ :Lf-,%z.fg(m)g’(z,z)-§(7:2)§'(2,’>§ okt oley

= j/\.,v, Q’( 1;1)0({1;%]% (8)

{9(1 1)g(z,2) - o, 20t n}oév

= 1
i'j( Py "“‘Fm)g'(f,ﬂcbz,.

To the atomic densities g we associate atomic energies

Eq =J(T- zg/r. 1>93(1 1) ol (9)
Efﬁz{gﬁ(m'z)%(z,z%gjh,z)gﬁ(z,z)zou,ouz

and obtain

E ZEﬁ 3<I'L[ij //\jh "j-ﬁ ?h(1 T)O(X

Y‘M gﬁ (1) ley+ 5%{2{ %(Z, D, (2.2)~ Q220 (22 dy d\/zj

(10)
= ZE +3%1 Z [Zn/Qﬁh f;ﬁgq gh(m)og(q]
+Z juﬁ‘gﬁ("‘;")o(a(,l,

=k

The various terms in these expressions can be given the following
. -
physical interpretation. Eg can be thought of as the energy of an

atom in a "valence state" with the density matrix gg. The difference



between Eg and Fhe Hartree-Fock atomic ground state can either be
caleulated rigorous.y or estimated from the atomic spectrum, Since Eg
is independent of other atoms it ¢can be neglected in calculations of
bond angles and distances, The remaining terms in Eo give the inter~
act?ons between unperturbed atoms while E' is the energy associated
with the electron redistribution which gives the main contribution to

the molecular binding energy.

L4, 'Matrix represeptation of the Fock operator.

As mentioned above, for closed shell atoms the atomic density
function gg is chosen to be the Fock-Dirac density matrix of the
atom in its ground state. With' [ig) denoting an atomic SCF orbital i

on center g we have the eigenvalue relation

(T, ~Ug)lig> = Eiqligy (11)

where E;ig is the orbital energy. For open shell atoms a single deter~
minant does not in general fulfill the symmetry relations of the true
wave function. The SCF ground state is therefore in this case repre-
sented by a sum of determinants with given coefficients. The Fock
operator is different for closed and open shells and contains further
coupling terms between open and closed shell orbitals of tﬂe éaﬁe
symmetry. All these correction terms are here taken together into an
operator Wg defined by

(“!‘1+u3).’iﬁj> s(ecj +WS)(£9>

(12)



where eig is the open or closed shell orbital energy.
Let us now consider the matrix representation of FM. In the -
chosen basis system, which is now treated as spin independeant, we
] . ,‘ — 1 ) s
represent g by the matrix R {_le} and introduce the Mulliken

notation for electron interaction integrals

((Lj(kfl) = jv"(njm #?_k"’mlcz_) olar,,

(13)
where now. the atomic indices have been surpressed. Using (12) we
write the diagonal elements of the Fock operator as :
{iglFuligy = g£3+<¢31w1£3>+4z<L-3lu4{¢3>
* )
J (1)

+ 7 R G - £ (el 40)]
kg ; . -

The off~diagonal elements <ig(FM]jh> are divided into two groups, )

g=h, and g # h. For g = h we get

{iqlFRyljg> =< glWgljg> +;_<i3/ Ugljg>
*3

(15)
rz Ried (1l ) ~4¢ k(L))
and for g # h :
ClFuljhy =D (ecs+€j1) + <iglwgewpy[[h>
—<igl Tk y ' o
SiglTljay +4$Zj’h<tﬁiu40h> (16)

-+ ! ) .
é pkt{(LJ/k/c) *'2‘(: (Lflc(z{J)}
where Aij is the overlap int-.egrél‘<ig{jh>.

The molecular orbitals are ‘written in LCAO form as



and the Hartree-Fock equations in matrix.notation
(F-Aey) Cy=0; A=1,2.3. .. (18)

where «:X is the column matrix 4{Cjk} . The index ) will frequently

be suppressed in future sections.

5. Approximate relations for open shell atoms.

It is convenient to let 5)8 for an open shell atom be the ground
state charge distribution averaged over degenerate orbitals. Thus
every orbital in an open shell is occupied by the same fractional number
of electrons with o( and £ spin, Neglecting coupling terms which in
general are small we have, following Roothaan,13.for the closed shell

Fock operator

.
Fo T B et (R ) 2 pe Koo ()
= -[:-F L(ﬂ

where the summation over i is over spin orbitals and P; denotes the
spin orbital average population. In this approximation the W-operator
0

is clearly given by W = S - F% If |m%and | k) are open and closed

shell SCF orbitals with the eigenvalqe relations
C - ‘, o3 ' - - '
F(k>~€‘clk> y Flm>=€,1m> Coe L (20)
we have since <mlk> =0

<mitWl ks <mlk>’(€,;~ém)=o (21)
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The open shell Fock operator is under the same assumptions
o = n -
F=T, “,:%—f- foﬁ(znzzl_ﬂaicﬁi(&)cé(z)
(22)

= fote, F’,?_ 2_p: b +7e) P Ry,

where a, and bi are constants which are equal to unity for closed shell
orbitals anddepend on the atomic state for the open shell. A table
of these constantg for open s and p shells is given in Roothaan's

13

paper. The matrix element of the Wg—operator between an arbitrary

orbital i and an open shell orbital on atom g is thus given by

<ty lmg) - ZRY Lr-ap (i) (=)
——z’(1_~bJ')(g/JW)} C
where the summation is over open shell space orbitals on atom g and
{R?;Eis the (diagonal) matrix representation of Qg. However, since
the coupling terms have been neglected the relationm. (22).is not
necessarily fulfilled and will have to be imposed a priori.

An alternativeﬁthis treatment is to use eigenfunctions of the
operators 1%+'Ug as basis orbitals. The Hartree-Fock~Slater functions
calculated by Herman and Skillmanlh belong to this category. . Théy
are however given in numerical form and will have to be approximated
by analytical expressions if conventional molecular integral programs

are to be used.

6. Separation of core and valence ‘orbitals.

A solution of the full secular equation {12) can always be

achieved. However, it is well known that the inner orbitals do not
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change very much when going £from atom to molecule., We will make use

of this fact and make a full variational caleculation only for the outer
or valence orbitals while we treat the core orbitals and the core~
valence interactions by means of perturbation theory.

The core orbitals are localized near the nuclei, and interactions
between cores on adjacent orbitals can be neglected in the first
approximation due to small overlap integrals. The valence electrons
are mucﬁ more spread out and interact strongly with each other. One-
center core-valence iAteractions are quite small owing to the orthogo~-
nality of basis orbitals on the-same centex, but two-center interactions
might be of some importance. Core orbital energies may however be
quite different in atoms and molecules. Chem;cal'effects in X~ray
spectra are quite small relatively speaking, but represent neverthe%gss
shifts of core §rbital energies, sometimes of the order of 10eV.15
That these facts agree with our model can be seen in the following
way. Of terms perturbing the core orbital energies (ilt) the coulomb
interactions J Riz(ii(kl) are the m§st important. Since g' contains
contributions almost exclusively from valence electrons, and the
potential of a uniformly charged spherical shell is constant inside
the shell, the spherical component of the per;urbation will be msre or
less constant inside the éore, i.e. it will not affect theefqrm:éﬁ the
orbitals as much as their energies. The non-spherical womponents will
cause a first order electrostatic splitting or broadening of innershell
p~states iﬁ cases of low moleculgr symmetry; as long as this effect is
small second order angular efkecﬁsrin s-orbitals may safely be ‘ignored.
Another consequence of a model with a core unaffected by other than

first order perturbations is that if there is more than one inner shell



12

the K shell energy changes most, a situation which.is alsd confirmed
by experimental evidence iﬁ the form of X~ray emission spectra.16

In the expression for the total energy, the core-valence electro~
static interactions can be attributed to either the core or the valence
orb_ital energies. Therefore, if second and higher order core effects
are neglected, only wvalence electfon energies and wave functions neéd

to be considered in a discussion of the chemical bond.

f. Gore-valence non-orthogonality and higher-order interactions.

With the atomic orbital basis system employed here there is a
non-orthogonality between core and valence orbitals on different
centers. This problem does not appear in w~electron theory and has
kusually been ignored in previous spproﬁcimate MO-LCAO theories. Here
we will make use of a perturbation method leading to results similaf
to the pseudopoteﬁtial introduced by Phillips and Kf‘ne:’u-xmanl7 for the
orthogonalized plane wave method of band calculations in solids. The
scheme is quite general and can be ap\plied even if’the requirements
are not fulfilled for a first~order perturbation treatment of the:
core electrons.

Following L'dwdinj~8 we start from a system of linear equations

written in matrix form
M C = 0. ‘ (24)

In our case M = F — A E - where [ is the matrix repre-
sentation of the Fock operator and A the overlap matrix. Dividing
. :

the basis functions into two groups a and b we write

Maa@a‘+ Mﬂbcb = O

(25)
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’ —1
From the second of these equations we solve for €,= "'Mba Mbac'o»

and obtain the first-equation as

(M0a~Mab M;; Mbq) Ca = O . . (26)

We now let a be the valence orbitals, b the core orbitals.vaa =
. ~
“Mab Mbb Mba is now the matrix representation of a

pseudopotential V from the core orbitals. Its elements are

\/:LJ- =_~£:z ( ;:*L.k *AME){(EM—A%EWH@J'"%’E) (27)

where i and j go over the valence orbitals and k and 1 over the core.
orbitals. This index convention will be used in the remaining part
of this section and will also be referred to im later sections.

A solution of the reduced secular equations
("aof—vao."AaaE> Ca:—o (28)

is rather cumbersome since Vaé is dependent on E, not to mention the
fact that F is dependent on € through the density matrix. If a
solution of arbitrarily high accuracy were degired it would probably
bé easier to solve the originaj," secular equations directly. However,
the matrix AR, = be — My E is almost diagonal due to the
smallness of core-core interactions and we can evaluate its. igve:ge by

means of a series expansion
-1 o T FY -1 -1
M, =A-A'BA+ A'BA'RA - ()

where A = M by = 8 ig’ diagonal. Furthermore, as discussed in
the previous section the core atomic orbitals are close approximations

40 the core moleculsr orbitals. We therefore introduce the notation
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F'k :'Aik Fkk + C"L'k ' (30)
where Gik =0 i‘f
~FMXK = é'k-’X—l'C . (31)

We will here treat or;ly the lowest orders of the Brillouin type pertur-
bation expansion one gets from the series expansion of the matfix
inverse (29) Again, if the series is slowly convergent it would be
better to go back to the original secular equations. We obtain after
some simple maqipulatiéns

1)
\/L(J = _(Mab A Mba)ij

= 2 AU (P B + Gy Ay + D G )
* G ij/(ﬁck—ﬁ)} 5

{z) T
VLJ = (MQBA BA /de&)lj

\ .
% {u (Fy “OE) Dy

-+ Gdk(FkL*AmLE)Aﬁ'/(FKK—E) (33)
T LlFu-s0E) G /(R -8)

+ .
Gi( Frg~ D1 E) G,QJ/(FKK-E)(FLL_E )}r ’

where the double sum J ' excludes k=f. The term L (F . -E)D
k ik kk kj

ke
is the Phillips and Kleinman ipseu,cilop_m:en’«:ial.17 If the eigenvalue
relation (31) is fulfilled it is the only non-vanishing term. From the

computational point of wiew it is important to have the pseudopotential
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as insensitive to errors in E as possible. For that purpose we can
collect all terms linear in E and inciude them in the overlap matrix.

With the notation

~
W ) :
\/{_j =\ - EZK_QLKQICJ'

9
~ o ° o ’ (34)
and
ACJ' = ALJ — %Q!-kko. + 5_-)_2_ é‘.k‘A’c‘Aﬁ (35)
the secular equations {28) now become
(B +Vos A E)C.=0 (36)

~
&aa is the overlap matrix for the projected valence orbitals {XL}

with
Ll
— A . "\\ ; ~Jt
X=X~ 22 Die andl <LK e>=0. 6D
An equivalent procedure would be to start by orthogonalizing {?CL}

against {Xk} and to partition subsequently. In that case integrals

over the Fock operator are given by

CKAFIGY =< 7 200 X [F X~ 2K, 20>

=F; - k_(é;/c Fkkék:j + D Gk‘//—f G kj )

: (38)
a to DacFady
(39

= C_iL ~2_ D F/c(.
Kt
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1f one uses the inverse expansion (29) all terms with the same denomi-
nator will be of the same oxder.

The operator 7 is still a function of E. We are however
interested in E wvalues only in the range of valence orbital energies.
In t_he denominators (Fkk-E), % is thus a numerically small qua tity
compared to Fk

k
clear that Asz is numerically small compared to Fkﬁ where the

which- is essentially a core orbital energy. It is also

leading terms are T} W k,i(ék )= k.Z(Fkk E.z)

The Fock-Dirac density matrix formed from the occupied molec-
ular orbitals in the partitioned representation becomes rather unwieldy
if a higher accuracy is desirved. The expansion of a set of normalized

orbitals {¢i’§ in the AO basis {XJ} . will be denoted
C#L' = Z%' <l 638)
Faati! |

with the orthonormalization condition

<‘f> <+t D= 1C"‘ < Xl N> = A = &'J' (39)
where C,: stands for the column vector {CK;} s k=1, 2,... . 'I:he

Fock-Dirac density matrix is given by

QU= 22 =y
—,,ZZZ_XLC Y*’* Z )(
k

¥ . (40}

l: oce, \I,

-

or in matrix notation

W F o(zz £C Q;L . (41)

{ oce.
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The summation over i extends over all doubly occupied space orbitals.
Since some of these belong to the core and others to the valence shell
and since orbitals calculated from the partitioned secular equations
(28) or (36) are in general not normalized to unity, the density matrix
becomes quite difficult to evaluate.

- The -summation over core orbitals can be eliminated in the
following way. Let the space formed by the M linearly independent
basis functions {X:g be occupied by 2M electrons. An arbitrary
ort;honormal set of orbitals *{‘QL} " can be constructed from {X‘-.Z) by

17

means of the relation
=Y AT
= A “ N

W e (u2)

Here (? and X are the row matrices {(P” (PZ yemene (ng‘
and {X1>7<1-~ . XM} c2spectively, and [J is am arbitray unitary
-1, N7 - .
matrix. A% fulfills ._/‘A\—/"'As/z: Vas! ! , and is assumed to be
Hermitian. .The density matrix formed from %0 is
+ At “{/2 + =t o
2L GO = 2PY AN AVUA Y = 2 A AT
H

or

- |
Ry s2L | )

The Fock-Dirac density matrix for the system can now be obtained by
means of subtraction of the unoccupied orbitals from iEM giving the

result

) = J CAAQE—(" ;Efl Ci g:zrﬁ )-

‘“\M 7 wnoce, ) (45)
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The summation over unoccupied orbitals is clearly not over core orbitals.
For the further development we consider a basis of projected valence

-]
orbitals. In this case <& 1is given by

- )
- A,. Oab

A = By (46)
_ O AL
without any terms linking core and valence orbitals. We write
Cia . ‘
where
o . . .
C;y, = - Mo M’aaClQ, s (48)
in accordance with (25)., The normalization integral becomes
-+ * A +
. CAC= C@Aaq Ca + chbbcb
. f -+ -—{ “‘(
1 + Ca Mab Mbb Abe bl Mba CQ (49)

N .
if Ca is normalized by Ca Aaa(‘ a = 1. This normalization comes

naturally from the solution of the partitioned secular equation by
conventional ma\:r.ix diagonaliza‘tion me;hods and is ‘identical‘to ‘the
intermediate normalization common in perturbation theory.

As done previously for ,t:h:e-’Fock operator we can expand the
matrix inverse N(;b as a pweraseries and insert the result in the

density matrix, These results seem however not to offer much
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simplification of the computations and will therefore be omitted here.

8. Aggfoximate multicenter inteprals

Several approximation methods have been proposed for reducing
time-consuming many-center integrals to simple one- and two~center couloumb
type integrals., In n-elecéron theory the zero-differential-overlap
(ZD0) has been Qidelf applied and Pop1e8 ‘ has recently discussed some
of its consequences for more general systems, The success of this
approximaﬁion is usually coupled with the guccess of the Mulliken
20 !

épproximation§

X3 = o0y QAT+ XU/ 2 o)

In a symmetrically orthogonalized basis (g‘a X A{-’/L one sees by

expanding
N -, ;
g /Z—./(ﬁ—{-s ) z—;.-' ﬂ"‘z”&"'g 32:,-- (51)

that the ZDO approximation (R(% = g‘J k‘)é is fulfilled to the
first order of Asij' For large overlap integrals, however, higher order
terms in the expansion (51) might be of importance aﬁd it is doubtful
how well the ZDO approximatioﬁ works in such cases. In this connection
we will therefo;e discuss some approximations of the Mulliken type.

Poplea_found that the ZDO approximation as cuétomarily applied
is not invariant under transformations of the basis., Thus the calcu-
lated energy may depgnd on how one chooses Py py! and P, orBitals. The
same holds true for the Mulliken'approximation. Consider integrals of
an operator V, which might be the potential from a nucleus or some

kind of electronic charge distribution. The Mulliken approximation gives
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4%;3( V 17(;';'> =(Vh:)') ’AS’L(V(!'L')"" (V[JJ):[/"Z 52
Let U be a unitary transformation of the orbitals on center h, thus
,f h
Xxh"" 7. X uJ'K ' (53)
3 J

The condition for imvariance of the Mulliken approximation is

(Vi) =0 LVIE) +(VIkk) ] where
. | -
ASLVJ = %;_ tfsij L‘Jl( (54)

From (52) and (53) we get hovever

(vick) = %(V(U)u\jk
= iﬁi&ﬂ{:(vltt)+({/{‘jj)j u_‘}k )
.-:_J,i[Ath(V!iL)-i'i:[_\g uJ-k(VUJ)j.

In order to restore>the invariance we therefore have to make a further
approximation, ( &/(i() = constant for all :(!\ . This is
equivalent to Pople'’s theory with complete neglect of differential
overlap. (CNDO). ‘ ‘

An approximation which is closely related to the Mulliken
_approximation and which is invariant under transformations of atomic
orbitals on a particular center has been discussed by Ruedenberg?2
With a complete set of orthonormal orbitals on each center one can
write withéut}?pproximation :

XX, =X;3§Xfaij-= Z D x};xj"
= 3Yv3 ; hey b | e
[‘é Xi Xxéﬁ t Zk;éik Xy: XJ .1/2- .
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Since the expressions are exact mo invariance properties are destroyed
so far, With truncated sets {Xz} and &X;:‘]}invariance is kept for
transformations within the‘truncated sets. The most extreme truncation
keeping only X? of {X?}and X\fl ofgxk‘;jgives the Mulliken aphroxi-
mation,

' ' With the Ruedenberg approximafion electrostatic integrals are
reduced to integrals of the type (V’[{?jﬁ) » where i and j may be
different.orbitals located on atom g . This approximation is clearly
analogous to Pople's neglect of diatomic differential overlap (NDDO)
approximation.

A generalization of the Mulliken and Ruedenberg approximations

has been given by Ldein.zB’gh

Instead of the arithmetic mean of
terms from both centers, a weighted mean can be employed to give the

correct dipole moment of ﬂf?jXJH, along the internuclear axis,

h 5 ~9 h
XX =>in:xiyja,ﬂ'+u~x)zk.a;kxk X o

It is to be noted, however, that invariance is preserved only if A is
a constant independent of the choice of a particular pair of orbitals
on the two centers.

With the Mulliken approximation several simplifications can
be made in the calculation of matrix elements to the Fock oﬁerétér.

For the Coulomb integrals one gets
L - L .
Z R (ijllet) 249[4;3(@&‘.-&;;; Pe Gyl o9

_where Py = %E}szlsﬂk is the Mulliken gross population of ij

and Gij = (1i/31).
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Exchange integrals give the following expressions
' KZ‘_; R Cillkj) = 2 [(aRA); G o + Z(AR) Gric D)
: : (59)
-7 A GKJ(RA)‘(- + (A QA)(j
i J J
wherg Qij = RijGij' From the computational standpoint formulas like
these are very convenient.ah By calculating and storing matrices
AR,ARA) A QS and the \;ector %?K GKJ' first, ;nd then
evaluating the éontributions to F one gets in the computer program
a maximum of thyee instead of four nested loops and a considerable
time saving.-

The Mulliken approximation has aunother interesting feature in~
connection with the partitioning approach. If:cofe-core overlap
integrals are neglected there are no contributions from core orbitals
to electron distributions formed from projected valence orbitals., With

the notation of section 7 we have

~

XCXJ = (X% Puc i )Yy fzﬂ(zﬂq )
= % (89-Z 8y 8) XX+
= éﬂ ZE;QJ (j}f{)fg'+ikzj)QJ,J

(60)

In particular, for i = j we get

X=X X | (61)

N -
LY

which thus takes into account thé different normalizations for the two

sets of orbitals.
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9. Discussion

A quantum mechanical approximation may be judged under the
ﬁifollowing criteria. 1) mathematical rigor, 2} ’computational
.‘simpllcity, and 3) agreement with experiment.v Tte method presented
*lhere is: a compromise between 1) and 2) while no emphasis has been placed
on 3) in the derivation of: formula here, Hnw te(tala?ce 1) and 2) is
to some extent a matter of pereogel taste and\eetetei alternative
approaetes are possible on the~basls‘uf preeeut”resuits. h

An excellent agreement with experiment could always be
obtained if various quantitites “in'the Pariser-?arr-Pople theory of
’con'jiklga‘ted‘hydx:c‘x:z-nrbcma.“hj However; in that vaxtépﬁgweﬁfthe physical
content of the Schredigger(eqngtipﬁ‘ie 19et;§;d dit%ieelties arise when

totally different systems are to be treated. With po or few parameters,

our method seems to be of greatest importance where ‘the experimental
information is scarce édd{ét ;n}tip»calcﬁiatienéfete’tpo laborious.

| Applications are in progtess to inorgaeie{iéﬁe and molecules
with sulfur or chlorine as the central atdm;L‘Premigiﬂé results have
Béén ebtaihed for ground state properties éueﬁ'ﬁeﬁﬁgnd angles and
charge/ﬂistributi5na;'fALdetailediéceOuntkwil}‘be'éiveﬁ in %orthcoﬁing

papers.
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